This class needs to hold 52 cards in a deck, deal out those cards, and shuffle those cards. First, we are going to need to create the constructor function for this class. This will just create an array for itself to hold the deck and fill that array with in-order values. We also set the index for where we are going to grab cards to the top of the deck.
spelchan.Deck = function()
{
this.cardArray = [];//new Array(52);
for (var cntr = 0; cntr < 52; ++cntr)
this.cardArray[cntr] = cntr + 1;
this.nextCardIndex = 0;
}
This means that we now have a deck of cards but running the test will still fail. While the card ids are in the deck, the deal method is not dealing them out! Dealing out a card is simply the matter of returning the card at the nextCardIndex while increasing the index.
spelchan.Deck.prototype.draw = function()
{
var rv = this.cardArray[this.nextCardIndex];
++this.nextCardIndex;
return rv;
}
Running the tests now show us that we are getting there but the shuffling is not sufficiently random enough to pass our test. This is because we are not shuffling the deck yet. We are going to need a way of shuffling the deck. Think about the different ways to shuffle a deck. There are many ways of shuffling, but most of them are inefficient as far as the computer is concerned. What our goal is, simply stated, is to make the cards in the deck appear in a random order. I realized that taking each card and swapping it at random with another card would be a very good way of shuffling as the computer can do this blindingly fast with really good results. While I came up with this algorithm on my own, my Algorithms teacher did tell me that I was not the first person to think of this and that this is like the technique that shuffling machines use.
spelchan.Deck.prototype.shuffle = function()
{
var cntr, temp, rnd;
for (cntr = 0; cntr < 52; ++cntr)
{
rnd = Math.floor(Math.random() * 52);
temp = this.cardArray[cntr];
this.cardArray[cntr] = this.cardArray[rnd];
this.cardArray[rnd] = temp;
}
this.nextCardIndex = 0;
}
Now when we run the test we see that all the tests have passed. We are now ready to start planning the tests we will be needing for a video poker game. There are other things that we could probably add to this class, but I have discovered over my years that it is easy to refactor and to add things later, especially if you have a testing framework to verify your changes don’t break anything. One tenant of Extreme Programming is to only write the code that you need. We have all that we need for video poker, so next chapter we will start working on a video poker game!
No comments:
Post a Comment